A HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE
author
Abstract:
Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the SVR for determining the optimal value of its user-defined parameters. The optimization implementation by the ACO significantly improves the generalization ability of the SVR. In this research, the input data for the SF estimation consists of the values of geometrical and geotechnical input parameters. As an output, the model estimates the SF that can be modeled as a function approximation problem. A data set that includes 46 data points is applied in current study, while 32 data points are used for constructing the model, and the remainder data points (14 data points) are used for assessment of the degree of accuracy and robustness. The results obtained show that the hybrid SVR with ACO model can be used successfully for estimation of the SF.
similar resources
A Hybrid Support Vector Regression with Ant Colony Optimization Algorithm in Estimation of Safety Factor for Circular Failure Slope
Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...
full textPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
full textHybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran
Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...
full textPrediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron
Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...
full textPREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION
Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...
full textAn Ant Colony Optimization Algorithm for Network Vulnerability Analysis
Intruders often combine exploits against multiple vulnerabilities in order to break into the system. Each attack scenario is a sequence of exploits launched by an intruder that leads to an undesirable state such as access to a database, service disruption, etc. The collection of possible attack scenarios in a computer network can be represented by a directed graph, called network attack gra...
full textMy Resources
Journal title
volume 6 issue 1
pages 63- 75
publication date 2016-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023